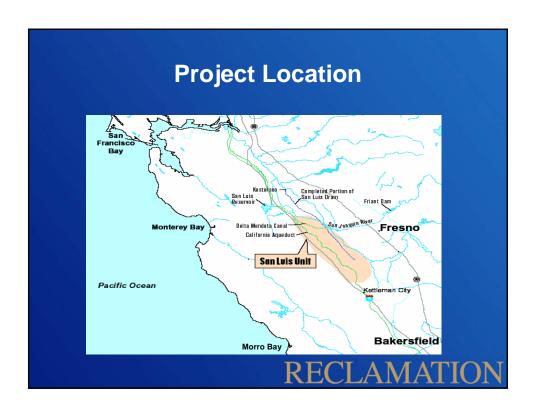


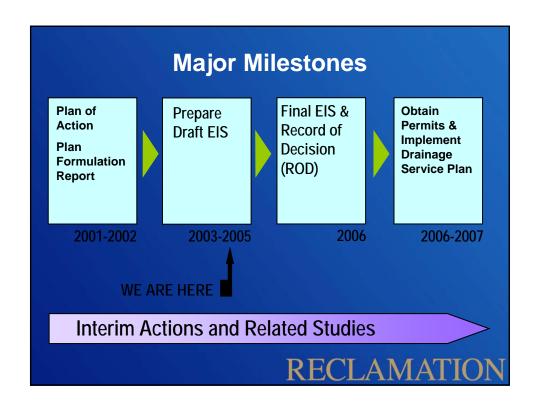
### **Overview**

- Purpose
- San Luis Drainage Feature Re-evaluation (SLDFR)
  - History
  - Evaluation of Alternatives
  - In-Valley Treatment and Disposal
- Biotreatment for Selenium Removal
- Questions and Contacts for Information

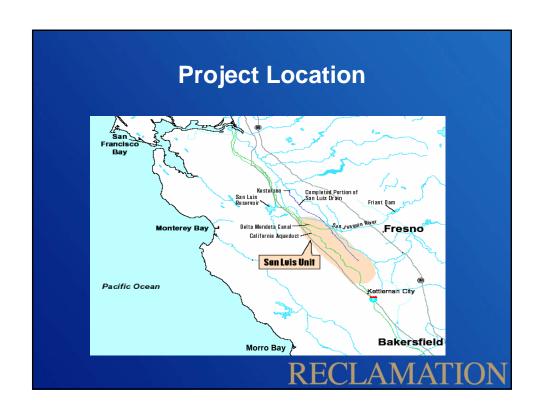

# **Presentation Purpose**

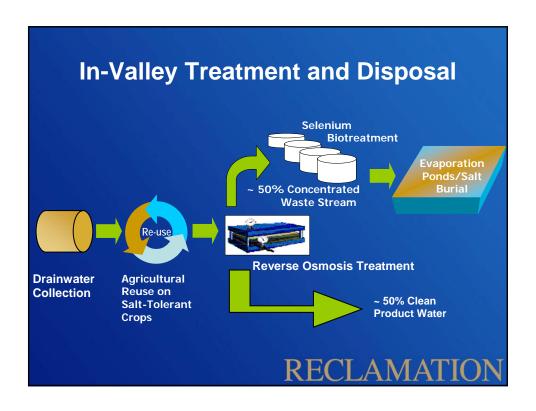
- Provide information to Salton Sea Advisory Committee on our experience with the ABMet® technology in the San Joaquin Valley
  - Results of biotreatment testing
  - Operational concerns
  - Environmental issues
  - Future plans
  - Answer questions

RECLAMATION


# **Project History**

• 1960 San Luis Act San Luis Drain Partial Construction 1968-1975 **Selenium Toxicity at Kesterson** 1983-1985 1992-1995 **Sumner-Peck Litigation & Judgment** • 2000 **U.S. Court of Appeals Judgment** • 2001 **Reclamation files Plan of Action** • 2002 **Plan Formulation Report Completed** • 2004 **Amended Plan for Land Retirement Publish Public Draft EIS** • 2005





# **SLDFR Project Objective**

- Department of the Interior. . .shall <u>without delay</u>, <u>provide drainage to the San Luis Unit</u>, pursuant to the statutory duty imposed by section 1(a) of the San Luis Act."
- Amended Plan of Action February 2004 allows for consideration of land retirement as a component of drainage service.
- Drainage plan developed must meet environmental requirements, be best plan for the federal interest, and fulfill conditions of the lawsuit.



# EIS Alternatives Evaluated No Action In-Valley (4) - (order by increasing land retirement) In-Valley Disposal Alternative - No additional land retirement Water Quality Alternative - Retire "Hotspots" Water Needs Alternative - Retire to meet water needs Drainage Impaired - Retire all impaired lands Delta Disposal (2) Chipps Island Carquinez Strait Ocean Disposal (1) Point Estero RECLAMATION





# **Selenium Treatment Options**

- Chemical precipitation and immobilization
  - Somewhat effective
  - Creates large volume of sludge
  - Expensive compared to other technologies
- Physical separation (e.g., RO membranes)
  - Separates and concentrates Se in a waste stream
  - Waste stream requires further treatment/disposal
- Biological reduction to elemental Se
  - Very effective
  - Preliminary analysis indicates least expensive
  - Residual Se in effluent may be more toxic than influent Se

# **RECLAMATION**

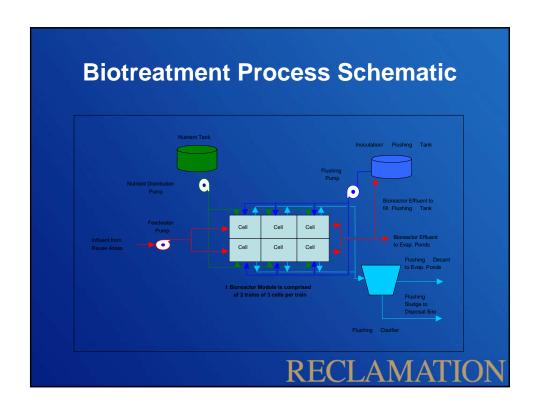
# **ABMet® Biotreatment Technology**

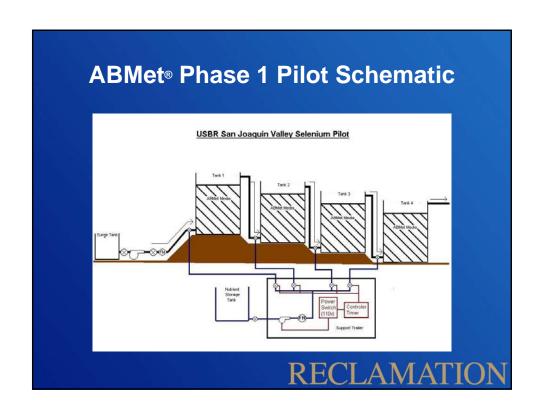
- Microbes reduce soluble Se to insoluble Se
- Microbes attached to carbon media within tanks
- Water flows thru tanks; insoluble Se retained within biomass in tanks
- Uniqueness of ABMet® technology
  - Specialized, laboratory-bred microbes
  - GAC media for interface between microbes and water
  - Nutrient for microbes

# **ABMet® Evaluation for SLDFR**

Laboratory bench test 2002

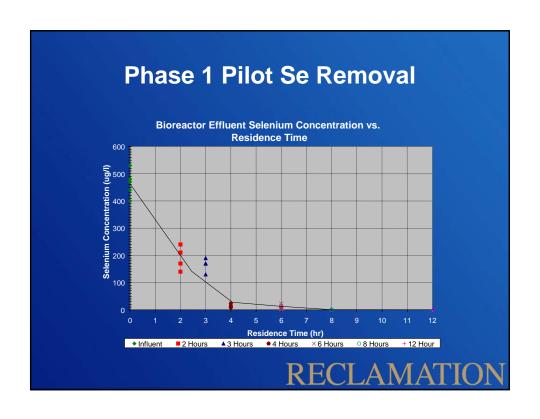
• Phase 1 pilot test 2003


Phase 2 pilot test 2004


• Site visit to Canada plant 2004

• Se bioaccumulation study 2004 - 2005

• Phase 3 pilot test 2005


• Demonstration facility? 2006 - 2007

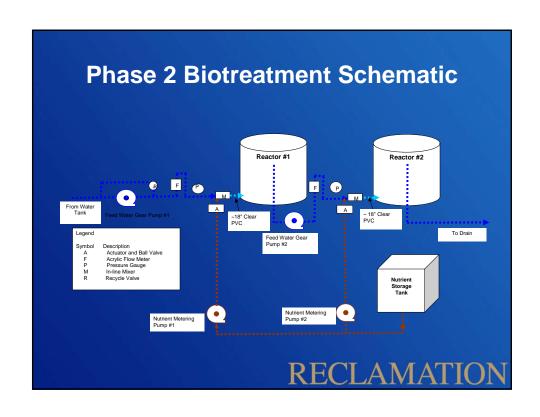




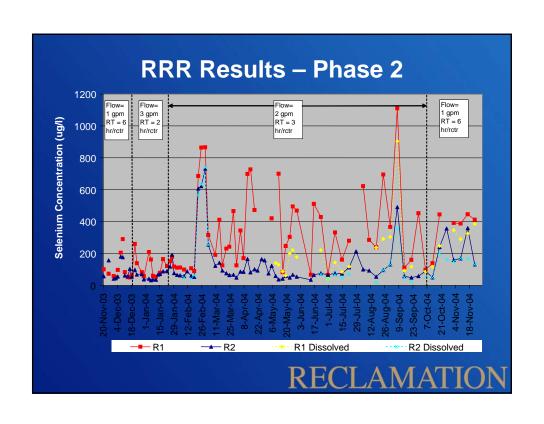




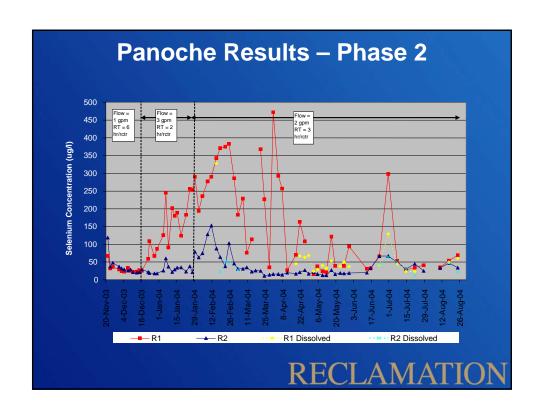


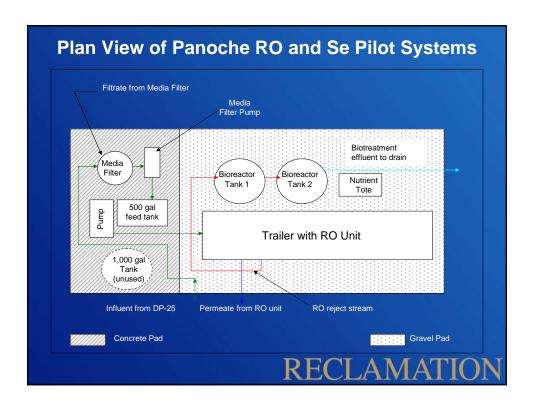

# **Phase 1 Conclusions**

- Effective Se removal
  - 99% removal: 500 μg/L in influent to 5 μg/L in effluent
  - Bioreactor residence time: 4 to 8 hours during summer
  - Four tanks in series not needed
- Flow system became plugged
  - Combination of biomass and GAC impeded water flow
  - Gravity head not adequate to overcome plugging
  - Problem should be solvable with proper design
- Include ABMet process for drainage service plan
  - Additional pilot testing required

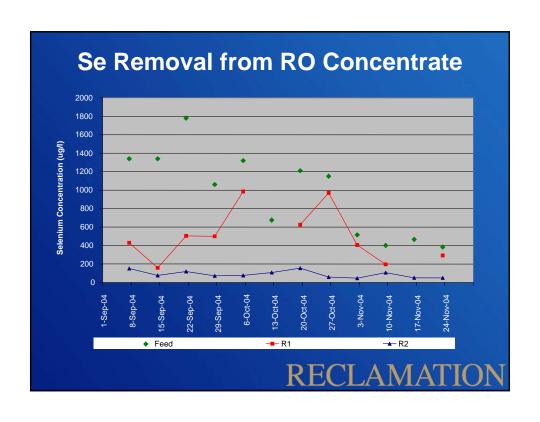

# **RECLAMATION**

## Phase 2 Pilot Tests - 2004


- · Hired engineering firm to design plumbing
  - Use pumps instead of gravity flow
  - Add more gravel at bottom of tanks
- Moved two tanks to Red Rock Ranch in Westlands
  - Feedwater is from sump in reuse area
  - RRR drainage salinity/Se concentrations > Panoche site
  - Higher salinity/Se waste streams available from evaporation experiments
- Two tanks remain at Panoche site
  - Add RO pilot system
  - Feedwater to bioreactors is RO concentrate

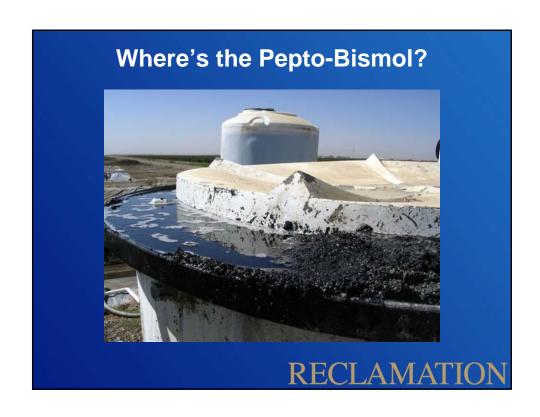





|            | Influent               | R1 Effluent           | R2 Effluent         |                 |                 |                      |
|------------|------------------------|-----------------------|---------------------|-----------------|-----------------|----------------------|
| Time (hrs) | Ave. Tot. Se<br>(ug/L) | Ave. Tot<br>Se (ug/L) | Ave. Tot. Se (ug/L) | R1 %<br>Removal | R2 %<br>Removal | Overall %<br>Removal |
| 12         | 1020                   | 106                   | 94                  | 89.6            | 11.7            | 90.8                 |
| 12         | 883                    | 331                   | 194                 | 62.5            | 41.4            | 78.0                 |
| 6          | 980                    | 315                   | 119                 | 67.8            | 62.3            | 87.9                 |
| 4          | 1235                   | 137                   | 73                  | 88.9            | 47.0            | 94.1                 |







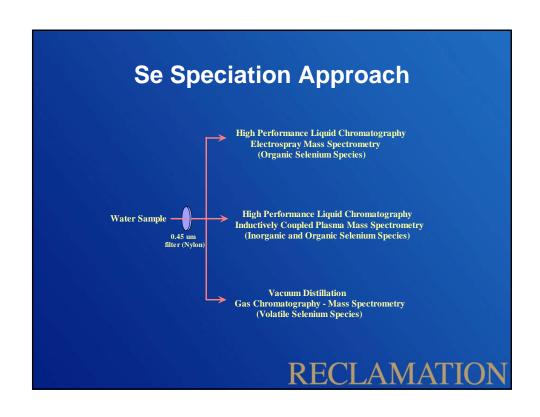


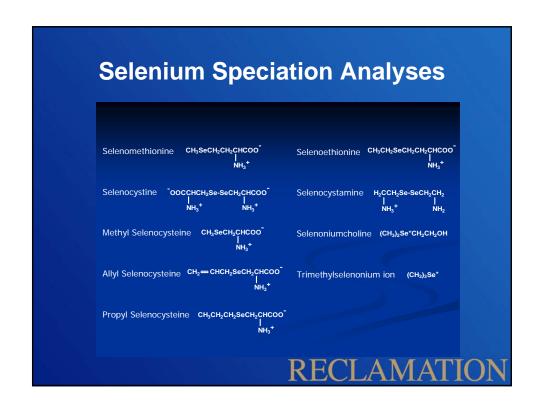










# **Phase 2 Conclusions**


- Effective Se removal, but less than Phase 1
  - Consistent 90% removal at both pilot sites
    - Varying influent salinities, 9 23 mS/cm
    - Varying influent Se concentrations, 300 1400 μgL
    - Varying water temperature, 15 25 °C
  - Plumbing modification fixed Phase 1 plugging
  - Longer Phase 2 pilot revealed other design deficiencies
    - Bioreactor tanks need capacity for gas expansion
    - · Inadequate nutrient and water flow controls
    - · Inadvertent air injection to anaerobic bioreactors
- Additional pilot testing required

# RECLAMATION

# Planned Phase 3 Pilot Tests - 2005

- New, taller bioreactor tanks
  - 6 ft diameter x 12 ft high
  - False-bottom plenum with nozzles to reduce plugging
  - Stainless-steel construction, concrete pad for support
- Replenish with new GAC to 5-ft depth
- Water depth above GAC about 5 ft
- Improved instrumentation and data acquisition
- Selenium speciation analyses
- Post-treatment oxidation to reduce toxicity
- Selenium bioaccumulation pilot study





# **Preliminary Se Speciation Results**

- Dimethylselenide was detected in post-bioreactor water samples, but not in pre-bioreactor water samples.
- Selenocystine was identified, but could not be quantified accurately due to high levels of matrix interferences in the water samples.
  - A new chromatographic separation with more selectivity is being developed.
  - Extraction and desalting cleaning procedures were developed to reduce matrix interferences. Recoveries of spiked SeMet, SeCys, and SeEt were 90-98%.

# **RECLAMATION**

### **Post-Treatment Oxidation of Residual Se**

- Residual organic Se species in treated effluent more bioavailable and toxic than inorganic Se species
- Potential solution: Post-treatment oxidation
  - Oxidize residual organic species to less toxic inorganic species
- Laboratory jar and field pilot-evaluation in 2005
- Results will be used to assess environmental impacts and mitigation requirements

# **Selenium Bioaccumulation Study**

- Conducted by URS Corporation at Panoche site
- Bioreactor effluent discharged to evaporation pond
- Monitor colonization and productivity of algae and invertebrates in evaporation pond cells
- Monitor and analyze selenium
  - Water analyses in evaporation pond cells
  - Tissue analyses of organism in evaporation ponds
  - Water and media analyses from bioreactors

# RECLAMATION

## **Future Activities**

- UC Salinity/Drainage Annual Conference
  - March 22, 2005: Doubletree Hotel, Sacramento
  - www.waterresources.ucr.edu
- Selenium Treatment Technology Symposium
  - March 23, 2005: Doubletree Hotel, Sacramento
  - Focus on biotreatment technologies
- Develop Se Advisory Committee
  - Treatment, environmental impacts, and mitigation
- Phase 3 Pilot Studies: April October 2005
- Develop Treatment Demonstration Facility
- EIS and Record of Decision

May through July 2005: EIS Public Review July 2006: Complete Final EIS and ROD

# **Questions and Contacts**

- Jerry Robbins, SLDFR Project Manager, Bureau of Reclamation, Sacramento, CA; 916-978-5061
- Michael Delamore, Drainage Program Manager, Bureau of Reclamation, Fresno, CA; 559-487-5039
- Scott Irvine, Technical Team Leader, Bureau of Reclamation, Denver, CO; 303-445-2253